Argonaute2 Suppresses Drosophila Fragile X Expression Preventing Neurogenesis and Oogenesis Defects

نویسندگان

  • Anita S.-R. Pepper
  • Rebecca W. Beerman
  • Balpreet Bhogal
  • Thomas A. Jongens
چکیده

Fragile X Syndrome is caused by the silencing of the Fragile X Mental Retardation gene (FMR1). Regulating dosage of FMR1 levels is critical for proper development and function of the nervous system and germ line, but the pathways responsible for maintaining normal expression levels are less clearly defined. Loss of Drosophila Fragile X protein (dFMR1) causes several behavioral and developmental defects in the fly, many of which are analogous to those seen in Fragile X patients. Over-expression of dFMR1 also causes specific neuronal and behavioral abnormalities. We have found that Argonaute2 (Ago2), the core component of the small interfering RNA (siRNA) pathway, regulates dfmr1 expression. Previously, the relationship between dFMR1 and Ago2 was defined by their physical interaction and co-regulation of downstream targets. We have found that Ago2 and dFMR1 are also connected through a regulatory relationship. Ago2 mediated repression of dFMR1 prevents axon growth and branching defects of the Drosophila neuromuscular junction (NMJ). Consequently, the neurogenesis defects in larvae mutant for both dfmr1 and Ago2 mirror those in dfmr1 null mutants. The Ago2 null phenotype at the NMJ is rescued in animals carrying an Ago2 genomic rescue construct. However, animals carrying a mutant Ago2 allele that produces Ago2 with significantly reduced endoribonuclease catalytic activity are normal with respect to the NMJ phenotypes examined. dFMR1 regulation by Ago2 is also observed in the germ line causing a multiple oocyte in a single egg chamber mutant phenotype. We have identified Ago2 as a regulator of dfmr1 expression and have clarified an important developmental role for Ago2 in the nervous system and germ line that requires dfmr1 function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The daughterless gene functions together with Notch and Delta in the control of ovarian follicle development in Drosophila.

The daughterless (da) gene in Drosophila encodes a broadly expressed transcriptional regulator whose specific functions in the control of sex determination and neurogenesis have been extensively examined. We describe here a third major developmental role for this regulatory gene: follicle formation during oogenesis. A survey of da RNA and protein distribution during oogenesis reveals a multipha...

متن کامل

A Drosophila fragile X protein interacts with components of RNAi and ribosomal proteins.

Fragile X syndrome is a common form of inherited mental retardation caused by the loss of FMR1 expression. The FMR1 gene encodes an RNA-binding protein that associates with translating ribosomes and acts as a negative translational regulator. In Drosophila, the fly homolog of the FMR1 protein (dFMR1) binds to and represses the translation of an mRNA encoding of the microtuble-associated protein...

متن کامل

Cortical neurogenesis in fragile X syndrome.

The absence of fragile X mental retardation 1 protein (FMRP) results in fragile X syndrome (FXS) that is a common cause of intellectual disability and a variant of autism spectrum disorder. There is evidence that FMRP is involved in neurogenesis. FMRP is widely expressed throughout the embryonic brain development and its expression levels increases during neuronal differentiation. Cortical neur...

متن کامل

Activation of a Meiotic Checkpoint during Drosophila Oogenesis Regulates the Translation of Gurken through Chk2/Mnk

BACKGROUND During Drosophila oogenesis, unrepaired double-strand DNA breaks activate a mei-41-dependent meiotic checkpoint, which couples the progression through meiosis to specific developmental processes. This checkpoint affects the accumulation of Gurken protein, a transforming growth factor alpha-like signaling molecule, as well as the morphology of the oocyte nucleus. However, the componen...

متن کامل

FMRP regulates neurogenesis in vivo in Xenopus laevis tadpoles.

Fragile X Syndrome (FXS) is the leading known monogenic form of autism and the most common form of inherited intellectual disability. FXS results from silencing the FMR1 gene during embryonic development, leading to loss of Fragile X Mental Retardation Protein (FMRP), an RNA-binding protein that regulates mRNA transport, stability, and translation. FXS is commonly thought of as a disease of syn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2009